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Abstract
The polarization of a multi-component vector soliton (of the Manakov type)
can be thought of as a state vector of a system of qubits (a register of quantum
information). A change of this state on demand via colliding the register
pulse with other solitons is shown to be possible with arbitrary accuracy.
The parameters (polarization, pulse width, velocity) of the register-switching
solitons corresponding to the computationally universal set of quantum gates are
found. Physical realizations of information processing using effects of the self-
focusing of optical media or of the self-induced transparency are considered.

PACS numbers: 02.30.Zz, 03.67.Lx, 05.45.Yv, 07.05.Bx, 42.65.Tg

1. Introduction

Different authors have proposed using vector solitons as carriers of information which can be
switched via collisions with other vector solitons [1–4]. In particular, a concept of computation
with Manakov solitons [5] has been developed in [3], and a computationally universal set of
(classical) logical gates has been designed for this aim by Steiglitz [6]. Vector solitons of the
Manakov type seem to be naturally useful as carriers of quantum information since they are
characterized by a polarization (unit) vector of complex components which can be thought of
as a multi-qubit state vector. The fast decoherence unavoidable for quantum (microscopic)
systems which is the main problem for practical implementation of the quantum logic is
expected to be reduced for such mesoscopic objects as solitons. However, the difficulty of
quantum information processing with the Manakov solitons results from the nonlinearity of
the transformation of their polarization vectors due to the collision.

The present paper deals with the possibility of simulating the quantum logical gates via
collisions of the vector solitons of the Manakov type. The accuracy of the considered operations
is found to be determined by the method of soliton creation and measuring their polarization;
thus, its limitations are not of a fundamental character. I find the parameters of solitons which
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collide with a register pulse acting as quantum logical gates of the computationally universal
set [7]: CNOT, Hadamard, π/8, and phase. However, the number of collisions necessary to
perform these operations depends on the size of the state space (it grows exponentially with
the number of qubits). Thus, the presented method is not called the realization of the quantum
logical gates but just their simulation. It enables one to build classical counterparts of simple
(of a small qubit number) quantum circuits. The advantage results from the fact that it does
not demand the use of signal converters (nor amplifiers) in order to perform a sequence of
universal operations with solitons in contrast e.g. to the method of [6].

The information processing applications of the vector solitons are based on the solution
of an inverse scattering problem by Manakov which was originally formulated as a step of
the solution of the two-component nonlinear Schrodinger (NLS) equation describing the self-
focusing (SF) of optical media. However, a similar inverse problem appears for other systems.
In particular, the self-induced transparency (SIT) of a three-level medium for the so-called
� or V configurations of the atom–photon coupling is described with similar equations as
those decomposing the two-component NLS equation [8]. Thus, the scheme of the soliton-
polarization switching via the pulse collisions is common for different physical realizations.

Section 2 is devoted to an outline of possible realizations of vector solitons of the Manakov
type and their collisions. In section 3, a construction of universal quantum gates using vector-
soliton collisions is carried out. Conclusions are given in section 4.

2. Basics of vector solitons

I outline realizations of the multi-component vector solitons in SF media and media displaying
SIT. Let us study the pulse equations of motion and their one-soliton solutions as well as
asymptotic two-(colliding)-soliton solutions.

2.1. Multi-component SF of nonlinear optical media

The envelope of a monochromatic electro-magnetic wave propagating in a nonlinear (Kerr)
medium is described with the two-component NLS equation. It was solved by Manakov within
the inverse scattering [9] approach [5], and the propagation of vector solitons predicted by him
has been observed e.g. in optical fibres [10], semiconductor waveguides [11], photorefractive
crystals [12]. Considering the propagation of an N-chromatic pulse, one uses the 2N-
component NLS equation describing the motion of the envelopes of the pulse components

iεj,τ + εj,xx +
1

2

2N∑
k=1

|εk|2εj = 0. (1)

Here, A,τ ≡ ∂A/∂τ and A,x ≡ ∂A/∂x denote differentials over renormalized time and
distance variables. The one-soliton solution of (1) takes the form

εj (x, τ ) = 4icj ζ
′′ exp[i2ζ ′x + i4(ζ ′2 − ζ ′′2)τ ] sech[2ζ ′′(x − x0) + 8ζ ′ζ ′′τ ], (2)

where cj denote components of a (complex) polarization vector of unit length. The constant
ζ such that ζ ′ ≡ Re ζ, ζ ′′ ≡ Im ζ is called a (complex) wavenumber.

2.2. Multi-component SIT

Let us consider an N + 1-level atomic medium coupled to an N-component optical pulse in such
a way that the lowest atomic level is linearly coupled to others (a V-bouquet configuration
of [8], see also [13]). The pulse propagation is described with Maxwell–Bloch equations,
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and the slowly varying envelope approximation is used for decomposition of the Maxwell
wave equation (see e.g. [14]). Let us define the electronic-level occupation amplitudes
b, aj (state-vector components) for the ground and excited levels, respectively, that satisfy∑N

j=1 |aj |2 + |b|2 = 1, and a spectral distribution g(α) characterizing the inhomogeneous
broadening of the medium and normalized to unity,

∫ ∞
−∞ g(α) dα = 1. Following [15, 16], the

evolution of the density-matrix components λij ≡ 2aia
∗
j , λj0 ≡ 2ajb

∗, λ00 ≡ 2bb∗ and of the
envelopes of the pulse components εj is described with

εj,x = 〈λj0〉, (3a)

λj0,τ + 2iζ ′λj0 = 1
2εjλ00 − 1

2εkλjk, (3b)

λij,τ = 1
2εiλ

∗
j0 + 1

2ε∗
j λi0, (3c)

λ00,τ = − 1
2εkλ

∗
k0 − 1

2ε∗
k λk0. (3d)

Here 〈A〉 = ∫ ∞
−∞ A(α)g(α) dα, and a frequency detuning ζ ′ is assumed to be the same for all

the coupled electro-magnetic modes. Equations (3b)–(3d) are equivalent to

aj,τ + iζ ′aj = 1
2εjb, b,τ − iζ ′b = − 1

2ε∗
k ak. (4)

Solving the system of (3a) and (4) with the inverse scattering method, one finds the one-soliton
scattering potentials

εj (x, τ ) = 4cj ζ
′′ exp[iω′x + i2ζ ′τ ] sech[ω′′(x − x0) + 2ζ ′′τ ], (5)

for aj = cja and
∑N

j=1 |cj |2 = 1. Here, ω′ + iω′′ = − 1
2

∫ ∞
−∞

g(α)dα

ζ−α
.

2.3. Soliton collisions

Following Manakov, the collision of two vector solitons characterized by the polarizations
c(1), c(2) and by the wavenumbers ζ1, ζ2 respectively results only in the change of the
polarization of both solitons according to the transformation

c′
(1) = 1

χ

ζ ∗
1 − ζ2

ζ ∗
1 − ζ ∗

2

[
c(1) +

ζ2 − ζ ∗
2

ζ ∗
2 − ζ ∗

1

(c∗
(2) · c(1))c(2)

]

c′
(2) = 1

χ

ζ ∗
1 − ζ2

ζ1 − ζ2

[
c(2) +

ζ1 − ζ ∗
1

ζ2 − ζ1
(c∗

(1) · c(2))c(1)

]
,

(6)

where

χ ≡ χ(c(1), c(2)) = |ζ1 − ζ ∗
2 |

|ζ1 − ζ2|
[

1 +
(ζ1 − ζ ∗

1 )(ζ ∗
2 − ζ2)

|ζ1 − ζ2|2 |c∗
(1) · c(2)|2

]1/2

. (7)

The wavenumbers do not change due to the collision. The above transformation is relevant
for the collisions of the SF pulses as well as of the SIT pulses since the inverse scattering
equations (of the form of (4)) are similar for both cases (see [5] and [8] for comparison).

3. Quantum logical gates

We consider a 2n-component vector soliton of the wavenumber ζ as an n-qubit register (in
nomenclature of [17], such a classical object is called an n-cebit register). Its polarization
(state) vector is transformed after collision with another soliton (called a switching soliton).
Let us study the possibility of finding the switching solitons whose collisions with the register
soliton change its state vector as the quantum gates of the universal set: CNOT, Hadamard,
π/8. The fourth gate of the universal set, phase, is known to be the composition of two
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π/8-gates. The parameters of the switching solitons, sequences of which correspond to the
quantum gates; the polarizations cy, dy, . . . and wavenumbers ζy, ηy, . . . are indexed with
y = a, b, . . . . These indices relate to a register qubit which is switched via the collision. We
assign consecutive qubits a, b, . . . to the components c1, c2, . . . of the register polarization
following the scheme presented below for a three-qubit case. A state of the system of qubits
a, b, c corresponding to the lower, middle and upper wires of quantum circuits respectively is
written with the vector

|c〉 = c1|0〉c|0〉b|0〉a + c2|0〉c|0〉b|1〉a + c3|0〉c|1〉b|0〉a + c4|0〉c|1〉b|1〉a
+ c5|1〉c|0〉b|0〉a + c6|1〉c|0〉b|1〉a + c7|1〉c|1〉b|0〉a + c8|1〉c|1〉b|1〉a. (8)

Due to the collision, a state vector of the register c transforms into L(cy)c following (6).
Since all the logical gates are connected to linear transformations of the state vector

while the transformation L(cy) is not linear in general, we search for which parameters of
the switching soliton it becomes so. Let us define a linear transformation L(cy) such that
L(cy)c ≡ 1

χ(cy ,c)
L(cy)c. Following (6),

Lij (cy) =




ζ ∗ − ζy

ζ ∗ − ζ ∗
y

(
1 − ζy − ζ ∗

y

ζ ∗ − ζ ∗
y

cyic
∗
yj

)
i = j

− ζ ∗ − ζy

ζ ∗ − ζ ∗
y

ζy − ζ ∗
y

ζ ∗ − ζ ∗
y

cyic
∗
yj i �= j,

(9)

and χ(cy, c) = |L(cy)c|. If L(cy) is unitary, L(cy) = L(cy) and L(cy) is linear. Thus, our
problem reduces to the study of the linear transformations (9).

In subsection 3.1, we consider in detail logical operations on the two-qubit registers
represented with four-component polarization vectors. However, they can be performed on
many-qubit registers with a similar way, which is addressed in subsection 3.2.

3.1. Processing with two-qubit information

3.1.1. CNOT gate. The proposed implementation of the CNOT gate consists of two steps:
rotating the polarization vector of the register and multiplying the resulting polarization
by ‘−1’. Here, we focus on the first step addressing the second step at the end of
subsection 3.1.3.

The rotation demands satisfaction of the condition ζ ′′ � ζ ′′
y together with (i) ζ ′ = ζ ′

y

or (ii) |ζ ′ − ζ ′
y | � ζ ′′

y . Following the first condition, our implementation of the gate is
approximate. The computation accuracy depends on the ratio of the register to switching
pulse widths; thus, it is determined by the method of creating the pulses and measuring
their polarization. However, use of condition (ii) instead of (i) results in further loss of the
computation accuracy. Condition (i) can be fulfilled for collisions of the SIT pulses while it is
inapplicable to SF pulses since values 4ζ ′, 4ζ ′

y are equal to the SF-soliton velocities following
(2). Thus, if ζ ′ = ζ ′

y , the relevant SF solitons cannot collide.
Taking the components of the polarization vector of the switching soliton cyi ≡ |cyi | eiϕyi

for y = a such that

ca1 = ca2 = 0, |ca3| = |ca4| = 1√
2
, ϕa3 − ϕa4 = (2k + 1)π, (10)

where k is an integer, one finds

L(ca) ≈ (−1)




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

�

�

(11)



Simulation of quantum logic via collisions of vector solitons 12509

Up to the multiplier ‘−1’, L(ca) is the CNOT operator represented graphically as the quantum
circuit above. The CNOT operation changing the qubit b can be performed with the switching
soliton of the polarization cb:

cb1 = cb3 = 0, |cb2| = |cb4| = 1√
2
, ϕb2 − ϕb4 = (2k + 1)π, (12)

where k denotes an integer. The relevant transformation matrix of the register polarization is

L(cb) ≈ (−1)




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 .

�

�

(13)

3.1.2. Hadamard gate. Since the Hadamard operation changes all the components of the two-
qubit state vector and its matrix contains elements equal to zero, it cannot be performed with
only one collision. In order to implement the Hadamard gate, we assemble two collisions
of the register soliton with switching solitons of wavenumbers ζy, ηy and of polarizations
cy, dy , respectively. Similarly, as for the CNOT gate, we assume ζ ′′ � ζ ′′

y , η′′
y together with

(i) ζ ′ = ζ ′
y = η′

y or (ii) |ζ ′ − ζ ′
y | � ζ ′′

y , |ζ ′ − η′
y | � η′′

y . For the polarization vectors of the
components (cyj = |cyj | eiϕyj , dyj = |dyj | eiφyj ) given by

ca1 = ca2 = da3 = da4 = 0, |ca4| = |da2| =
√

1+
√

2
2
√

2
,

ϕa3 − ϕa4 = (2k + 1)π, φa1 − φa2 = (2l + 1)π,

(14)

the collisions transform the register as the Hadamard operation performed on the qubit a. The
relevant transformation matrix takes the form

L(da)L(ca) ≈ 1√
2




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


 .

H
(15)

In order to perform the Hadamard operation on the qubit b, we use the switching solitons with

cb1 = cb3 = db2 = db4 = 0, |cb4| = |db3| =
√

1+
√

2
2
√

2
,

ϕb2 − ϕb4 = (2k + 1)π, φb1 − φb3 = (2l + 1)π.

(16)

The resulting state transformation corresponds to the matrix

L(db)L(cb) ≈ 1√
2




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


 .

H
(17)

3.1.3. π/8 gate and multiplication by a number. For the same reasons as mentioned
considering the Hadamard gate implementation, the π/8 transformation and the multiplication
by a number cannot be carried out with only one collision. This concerns the operation of the
multiplication by a number even in the case when there is only one qubit in the register, as
noted in [3]. Since the matrices of these operations are diagonal, they must be composed of
the collisions with switching solitons with polarization vectors that have only one non-zero
component. This property and the identity

ζ ∗ − ζy

ζ ∗ − ζ ∗
y

≡ 1 − ζy − ζ ∗
y

ζ ∗ − ζ ∗
y

(18)
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lead to diagonal and unitary transformation matrices L(cy) with identical diagonal elements
except one. It enables performing the exact π/8 operation and the operations of the
multiplication by a number via sequences of pulse collisions.

We perform the π/8 operation with two switching pulses whose wavevectors satisfy the
conditions

ζ ∗ − ζy

ζ ∗ − ζ ∗
y

= eiπ/4,
ζ ∗ − ηy

ζ ∗ − η∗
y

= eiπ/4. (19)

In particular, colliding the register with the pulses of the polarization-vector components
|ca4| = |da2| = 1, one achieves the π/8 transformation of the qubit a composed with the
multiplication of the state vector by ‘i’,

L(da)L(ca) = i




1 0 0 0
0 eiπ/4 0 0
0 0 1 0
0 0 0 eiπ/4


 .

π/8
(20)

The π/8 operation on the qubit b follows from the polarization components of the switching
pulses |cb4| = |db3| = 1. Then, the resulting register-transformation matrix takes the form

L(db)L(cb) = i




1 0 0 0
0 1 0 0
0 0 eiπ/4 0
0 0 0 eiπ/4


 .

π/8
(21)

Following the construction of the π/8 gate, one can perform the multiplication of c by a
factor eiϕ with four collisions of the register soliton and switching solitons polarized along the
different main axes. The wavenumbers ζy of these switching pulses have to satisfy

ζ ∗ − ζy

ζ ∗ − ζ ∗
y

= eiϕ/5. (22)

The multiplication of the state vector by a number is a second step of the CNOT and π/8
operations. However, in order to reduce the number of soliton collisions, one can shift the
multiplication operations to the end of the algorithm and, thus, perform only one multiplication.

3.2. Processing with n-qubit information

We will see that the construction of the universal set of quantum gates operating on two-qubit
registers can be extended to many-qubit registers. Performing a gate operation on an n-qubit
state demands use of 2n−2 times more collisions than for two qubits.

Let us study in detail the implementation of the CNOT operation increasing the number
of qubits. We begin from adding a ‘free’ wire (a qubit unchanged via the gate action) at the
bottom of the circuit (11). The gate is realized via two collisions of the eight-component
register. The switching solitons of the polarizations cb, db such that

|cb6| = |cb8| = |db5| = |db7| = 1/
√

2,

ϕb6 − ϕb8 = (2k + 1)π, φb5 − φb7 = (2l + 1)π
(23)

transform the register following the matrix

[CNOT]1 ≡ L(db)L(cb) =




12 0 0 0
0 12 0 0
0 0 0 12

0 0 12 0


 , �

�

(24)
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where 1n denotes the unit matrix of rank n. Addition of j free wires at the bottom of the circuit
(11) corresponds to the CNOT transformation represented as

[CNOT]j =




12j 0 0 0
0 12j 0 0
0 0 0 12j

0 0 12j 0


 ,

���

�
�

}
j

(25)

which can be performed with 2j collisions of the register with the solitons of the linearly
independent polarizations

cy = [
0, . . . , 0︸ ︷︷ ︸
2j+2−2j −1

, 1√
2

eiϕy , 0, . . . , 0︸ ︷︷ ︸
2j −1

,− 1√
2

eiϕy
]
,

dy = [
0, . . . , 0︸ ︷︷ ︸
2j+2−2j −2

, 1√
2

eiφy , 0, . . . , 0︸ ︷︷ ︸
2j −1

,− 1√
2

eiφy , 0
]
,

ey = [
0, . . . , 0︸ ︷︷ ︸
2j+2−2j −3

, 1√
2

eiψy , 0, . . . , 0︸ ︷︷ ︸
2j −1

,− 1√
2

eiψy , 0, 0
]
,

...

(26)

In the next step, we add m free wires at the top of the circuit. The relevant transformation
matrix is block diagonal with 2m identical [CNOT]j matrices on the diagonal. It can be
decomposed into a product of 2m block-diagonal matrices containing 2m−1 unit blocks and one
[CNOT]j block. All of the operations corresponding to the factor matrices can be performed
independently with 2j collisions since the polarizations of their switching solitons are linearly
independent. The composition of these operations demands 2j+m = 2n−2 collisions.

All the remaining universal gates operating on the two-qubit registers can be adapted to
n-qubit circuits with similar consecutive addition of the free wires at the bottom and the top
of the circuit, as was done above for the gate of (11). In particular, adding j − 1 free wires to
the bottom of the circuit of (17), one finds the operation

[H]j = 1√
2

(
12j 12j

12j −12j

)
H

���

}
j

(27)

which is realized via collisions with 2j switching solitons of the polarizations

cy =
[
0, . . . , 0︸ ︷︷ ︸

2j −1

,

√√
2−1

2
√

2
eiϕy , 0, . . . , 0︸ ︷︷ ︸

2j −1

,−
√√

2+1
2
√

2
eiϕy

]
,

dy =
[
0, . . . , 0︸ ︷︷ ︸

2j −2

,

√√
2−1

2
√

2
eiφy , 0, . . . , 0︸ ︷︷ ︸

2j −1

,−
√√

2+1
2
√

2
eiφy , 0

]
,

ey =
[
0, . . . , 0︸ ︷︷ ︸

2j −3

,

√√
2−1

2
√

2
eiψy , 0, . . . , 0︸ ︷︷ ︸

2j −1

,−
√√

2+1
2
√

2
eiψy , 0, 0

]
,

...

(28)

Next, adding the free wires to the top of the circuit, one finds the transformation matrix to be
block diagonal and factorizes the transformation into 2n−1 soliton collisions. The adaptation of
π/8 and multiplication gates of subsection 3.1.3 to n-wire circuits is even more simple since all
their switching solitons are polarized along the 2n main axes. We omit its details. Let us only
note that by multiplying an n-qubit state vector by eiϕ , we assume that the switching-soliton
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wavenumbers satisfy

ζ ∗ − ζy

ζ ∗ − ζ ∗
y

= eiϕ/(2n+1) (29)

instead of (22).
Colliding the register soliton with consecutive groups of switching solitons belonging to

different gates enables one to carry out n-qubit quantum algorithms.

4. Conclusions

I have presented the concept of simulation of the quantum logic with vector solitons
constructing the universal set of quantum gates. Its realization will enable one to simulate
simple quantum circuits without using signal converters. However, the reduction of the number
of elementary operations (soliton collisions) expected from using quantum algorithms instead
of classical ones is not achieved since the number of collisions (and hence the time) necessary
for realization of a single logical gate grows exponentially with the qubit number. This
property and noise effects (increase of fluctuations of the soliton parameters with time [18])
limit the number of qubits and the circuit length (the number of gates). Similar restrictions
are relevant to a simulation of the quantum logic with linear optics [19].

Usefulness of the vector solitons for quantum-communication purposes is limited
following general limitations for the classical systems simulating quantum logic [17]. In
spite of the fact that the register can be in an entangled state, the nonlocality characteristic
of the quantum theory is absent. In particular, the soliton CNOT gate transforms any
factorizable state c, (|c〉 = (xb|0〉b + yb|1〉b)(xa|0〉a + ya|1〉a)), into an entangled but a local
one c′ = L[(0, 0, 1/

√
2,−1/

√
2)]c = (c1, c2, c4, c3), (|c′〉 = xbxa|0〉b|0〉a + xbya|0〉b|1〉a +

ybya|1〉b|0〉a + ybxa|1〉b|1〉a).
Two kinds of optical systems have been considered as media (displaying SF or SIT) for

the pulse propagation. Use of the multi-component SIT has been found to enable CNOT and
Hadamard gate simulation without the condition of different real parts of the colliding-soliton
wavenumbers, which is impossible with the SF media. Because of this, the information
processing with the SF pulses is potentially less accurate than with the SIT solitons. The
possibility of using other media than those considered above is determined only by the rules
of the pulse-polarization transformation due to the soliton collision (6) and, thus, by the form
of the inverse scattering equations for relevant systems. They have to be similar to (4).
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